0=-192+36x^2

Simple and best practice solution for 0=-192+36x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-192+36x^2 equation:



0=-192+36x^2
We move all terms to the left:
0-(-192+36x^2)=0
We add all the numbers together, and all the variables
-(-192+36x^2)=0
We get rid of parentheses
-36x^2+192=0
a = -36; b = 0; c = +192;
Δ = b2-4ac
Δ = 02-4·(-36)·192
Δ = 27648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{27648}=\sqrt{9216*3}=\sqrt{9216}*\sqrt{3}=96\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{3}}{2*-36}=\frac{0-96\sqrt{3}}{-72} =-\frac{96\sqrt{3}}{-72} =-\frac{4\sqrt{3}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{3}}{2*-36}=\frac{0+96\sqrt{3}}{-72} =\frac{96\sqrt{3}}{-72} =\frac{4\sqrt{3}}{-3} $

See similar equations:

| 3(x+3)-(1-7x)=9x | | 2y-14=-4y-16 | | x^2+5x+1=71 | | 4x^2-9x=90 | | -3x^2-8x-8=0 | | 1/2a=-1 | | -3x^-8x-8=0 | | 681/d=31 | | V=x(13-2x)(25-2x) | | 4,5x+3=1,5x+18 | | 8(x+2)=488 | | 50+6.25s=200 | | 2,2y-3,4+1,3y+2=0 | | 4x+5=+8 | | 2x^2+16x-13=5 | | 4X-14=7x-5 | | 5a+-6a+5=50 | | S+47=5s+15 | | 7–3x=9–x | | 2x/6+16=x | | 5x3-3x=x^2+2 | | 16-z=11 | | 3z-56=z+68 | | y+15=34 | | x/3-15=12 | | 50p+130=680 | | R-8+8r=-17 | | x^2=0.0625 | | 5x+100=3x+112= | | T=3t-64 | | (n-2)180/n=157.5 | | 3x-89=34/95 |

Equations solver categories